MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration
نویسندگان
چکیده
Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this important problem and proposes a modality independent neighbourhood descriptor (MIND) for both linear and deformable multi-modal registration. Based on the similarity of small image patches within one image, it aims to extract the distinctive structure in a local neighbourhood, which is preserved across modalities. The descriptor is based on the concept of image self-similarity, which has been introduced for non-local means filtering for image denoising. It is able to distinguish between different types of features such as corners, edges and homogeneously textured regions. MIND is robust to the most considerable differences between modalities: non-functional intensity relations, image noise and non-uniform bias fields. The multi-dimensional descriptor can be efficiently computed in a dense fashion across the whole image and provides point-wise local similarity across modalities based on the absolute or squared difference between descriptors, making it applicable for a wide range of transformation models and optimisation algorithms. We use the sum of squared differences of the MIND representations of the images as a similarity metric within a symmetric non-parametric Gauss-Newton registration framework. In principle, MIND would be applicable to the registration of arbitrary modalities. In this work, we apply and validate it for the registration of clinical 3D thoracic CT scans between inhale and exhale as well as the alignment of 3D CT and MRI scans. Experimental results show the advantages of MIND over state-of-the-art techniques such as conditional mutual information and entropy images, with respect to clinically annotated landmark locations.
منابع مشابه
MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery
PURPOSE Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. METHOD The method...
متن کاملNon-local Shape Descriptor: A New Similarity Metric for Deformable Multi-modal Registration
Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this problem and proposes a new similarity metric for multi-modal registration, the non-local shape descriptor. It aims to extract the shape of anatomical features in a non-local region. By utilizing the dense evaluation of shape descriptors, this new m...
متن کاملSelf Similarity Image Registration Based on Reorientation of the Hessian
The modality independent neighbourhood descriptor (MIND) is a local registration metric that is based on the principle of self-similarity. However, the metric requires recalculation of the self similarity during registration as this inherently changes during image deformation. We propose a self similarity registration method based on the Hessian (HE) that efficiently deals with the recalculatio...
متن کاملDeformable Lung Registration for Pulmonary Image Analysis of MRI and CT scans
Medical imaging has seen a rapid development in its clinical use in assessment of treatment outcome, disease monitoring and diagnosis over the last few decades. Yet, the vast amount of available image data limits the practical use of this potentially very valuable source of information for radiologists and physicians. Therefore, the design of computer-aided medical image analysis is of great im...
متن کاملMulti-modal image set registration and atlas formation
In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 16 7 شماره
صفحات -
تاریخ انتشار 2012